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The control of the current in charged particle accelerator magnets required 

the ultimate in stability. Current samlpling and measurement plus digital com- 

mand technology have advanced to the point that they seldom limit stability. 

Current stability is more commonly limited by the regulator’s speed in response 

to external perturbation particularly those coming from the power line. To help 

the regulating system resist perturbations from the power line a voltage feed- 

back loop is commonly used. The speed of this loop can be made much faster than 

the current control loop which must include as one of its transfer elements the 

load magnet which usually has a long time constant. 

The purpose of this work is to examine the feedback criteria for this type 

of loop and determine the conditions which maximize the gain-speed product of 

its response. 

The block diagram of the system to be analyzed is shown is Figure 1. The 

output of a phase controlled multi-phase rectifier is sampled and compared with 

a reference or command signal. This difference is amplified and fed to a system 

of amplifiers and networks which shape the closed loop response. This shaped 

signal is in turn used to control the firing of the rectifiers in the multiphase 

rectifier. 



This feedback system contains four elements each of which has a transfer 

function, The product of these four transfer functions represents the closed 

loop response which must be tailored to produce the desired results. These four 

elements are as follows: 

1. multi-phase rectifier 

2. Voltage sampling attenuator 

3. Network and amplifier system 

4. Command comparison amplifier 

For the purpose of this analysis the voltage sampling attenuator and the 

command comparison amplifier will be considered to be ideal elements, i.e. they 

have gain or attenuation but no phase shift. This leaves only two elements to 

be analyzed, the main rectifier and the network system. 

The transfer function of a multi-phase rectifier was derived in 1968 and 

reported in Conversion Division Technical Note AGSCD-30. For completeness this 

derivation has been extracted, edited and attached to this work as Appendix A. 

The results are shown in Figure 3 of this appendix. 

Normally the transfer function of an element is single valued, i.e. it can 

be represented by vector specifing a magnitude and an angle. In the case of 

a multi-phase rectifier this is not true. This transfer function has a third 

parameter namely the phase angle between the control or driving function and the 

rectifier firings which form the sampling events. This third parameter is de- 

fined as I$ in the appended derivation. If the driving function is not integerly 

related to the sampling frequency the parameter $I will move through all values 

and the transfer function vector will move through a locus of points. These 

loci are those shown in Figure 3 of the Appendix. 
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The closed loop response of any feedback system is given by the following: 

A 1 
C=1_AB=B 

AB 

i-1 
1 -AB 

If 1 /B is the desired response which in this case represents the comparison of 

the attenuated output with the command signal and is assumed to be ideal, then 

expression AB/( 1 -AB) 

sion has been analyzed 

The circles shown on 

quantity AB which have 

represents the deviation from ideal. This vector expres- 

in the literature and the results are shown in Figure 2. 

Figure 2 represent the loci of all values of the vector 

the labeled transfer magnitude. For example,the circle 

labeled 120% shows the locus of the AB vector for which the closed loop response 

is 120% of the driving signal. There is a simular plot for the closed loop 

phase response not shown. 

What is 

response that 

by examining 

the desired closed loop response? At first one might suggest a 

has no overshoot, i.e. a response that does not exceed 100%; but 

Figure 2 we see that this requirement implies that the AB vector 

lie to the right of the 100% line. The maximum phase angle of the AB vector is 

only slightly larger than 90”. If some overshoot is permitted a less restric- 

tive limit can be placed on the phase angle of the AB vector. A compromise is 

needed trading overshoot for phase. Some designers allow a large phase angle 

when the AB vector is largee and reduce this phase angle when the magnitude of 

the vector is 5 or less. Clearly this avoids the large overshoot loci, but I 

have had difficulty with this approach. During 

feedback system it is very easy to saturate one 

fiers used. Under this saturated condition the 

transient condition in high gain 

or many of the operational ampli- 

magnitude of the loop gain (AB 

vector) becomes very small sometimes almost zero. This collapse of the AB vec- 

tor magnitude moves the response into the high overshoot region and produces a 

near oscillatory recovery from saturating transients. A better solution is to 
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limit the phase angle of the AB vector to some chosen angle so that the satur- 

ated and unsaturated characteristic are simular. Overshoots between 120% and 

150% are usually acceptable and the corresponding maximum phase angle can be 

read from Figure 2. For this exercise I will choose a permissible overshoot of 

130% and use a maximum phase angle for the AB vector of 130”. Once the magni- 

tude of the AB vector is less than 1/2 the phase angle can have any value and the 

close loop response will be less than lOO$, see Figure 2. We can now proceed to 

design the amplifier and network system to meet these conditions. 

Figure 3 shows the transfer characteristic and design parameters of a 

simple RCR type network. Network of this type can be cascaded together with 

buffer amplifiers and desi,gned to produce an approximately uniform laging phase 

shift. Figure 3A shows an example of this cascading and the uniformity that 

results. Figure 4 shows the design relationship between the cascading para- 

meters. The frequency sp(acing is defined in terms of a frequency ratio, R. For 

any c1 the lagging phase an,gle has a maximum value, 0 max, which occurs when w/w0 

= l/(a(a+l>>'/,. At some lsower frequency, WL, the phase angle will be vz of 0 max. 

Again at some higher frequency, WH, the phase angle will also be equal to 0 

max/2. R iS defined as the ratio WR/WL. If networks having the same cx are cas- 

caded and their respective w. are in the ratio R then the phase lag of the sys- 

tem is given by the lower ‘curve of Figure 4 relating cx to the system phase shift. 

The other curves are for closer spacing of the w. values expressed as a power of 

the ratio R. For any desired system phase shift one or more solutions can be 

found. For example, for 1313~ we could use any one of the following: 
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Freq. Spacing CX w/w1 High w/w0 Low Ratio Freq. Spacing 

(Ratio) for 0 max for 0 max R (factor) 
2 2 

w2 0.09 17.84 .571 31.24 5.59 

R2/5 0.2 9.48 ,440 21.55 3.41 

R1 13 0.325 6.52 .356 18.31 2.64 

These three solutions produce identical results and any can be used. The 

attenuation characteristic of a cascaded set of these RCR networks is shown in 

Figure 5 and is a single valued function of the phase lag independent of the 

cascading scheme. For example, for 130” the attenuation is a factor of 27.9 per 

decade. 

It is desirable to have this attenuation factor per decade large in this 

feedback system so that the gain can be large in the frequency region where regu- 

lation and response preci,sion are required (ramp frequency) and small (less than 

‘/,) for frequencies where the characteristics of the rectifier are unmanageable. 

This is the same compromise that we examined before. The system phase lag wants 

to be large to improve the attenuation factor and small to minimize the over- 

shoot. The following table will illustrate these competing considerations. 
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Phase Overshoot Attentuation Gain at ramp * Gain at ramp 

angle 

1490 

138" 

130% 

1230 

1140 

9o" 

200% 

150% 

130% 

120% 

110% 

100% 

per decade 

45.0 

34.2 

27.9 

23.2 

18.5 

10.0 

fundamental 3rd Harmonic 

301 49 

190 35 

135 28 

99 22 

68 17 

24 8 

* gain at 360 H, = 1/2 the half frequency for a 12 phase rectifier. 

ramp frequency = 7.5 H, 

An overshoot of 130% is a reasonable compromise and yields a loop gain of 

28 at the third harmonic of the ramp frequency. 

For the Booster main magnet power supply there are only two possible 

choices for the rectifier type, 12 or 24 phase. For the numerical examples to 

follow I will assume a 12 phase rectifier, if 24 phase is ultimately chosen the 

frequency values can be doubled. In this case the sampling frequency is 720 H, 

and the rectifier response characteristic shown as Figure 3 in the appendix can 

be relabled replacing the k values with the frequency value of 720/k. The large 

circle labeled k=2 becomes the locus of the transfer function for the frequency 

360 H, and the small half elipse labeled k=3.5 becomes the locus for the fre- 

quency 205.7 H, etc. If these loci are placed on a Nyquist diagram and con- 

strained so that the maximum angle is 130 O the plot would be as shown in Figure 

6. For 360 H, the maximum, phase lag for the system external to the rectifier 

is 40°. The rectifier locus drawn around this point touches the 130” line. For 

lower frequencies higher v(slues for the external phase lag can be permitted. 

Curve 3 on Figure 7 shows the maximum value for these external phase lags for 

6 



all frequencies up to 360 H,. The ideal network set would be one that had a 

phase lag characteristic that matched curve 3. The cusp in this curve results 

from the k=2 characteristic of the rectifier and cannot be matched by simple 

networks. Also shown on Figure 7 is the phase characteristic of two network sets 

which represent the best approximation that I can find to curve 3. Curve 1 is 

the phase characteristic of a simple set of RCR networks having an Q of 0.09 and 

nested in frequency to produce a system phase lag of 130” in the midband. The 

absolute value of w. is chosen to yield a 40° phase lag at 360 H,. Curve 2 is 

similar except that the three higher frequency RCR networks have been adjusted 

by trial and error to tailor the high frequency shape of the phase lag character- 

istic to better match the optum shape. The amplitude characteristic of these 

two network sets are shown in Figure 8. The characteristic of network set No. 2 

is better than that of se’; No. 1 by a factor of 1.86 and is therefore the recom- 

mended set. 

The stability criterian for single valued transfer functions has been esta- 

blished by Nyquist and can be stated as follows. If the locus of the ends of all 

vectors which represent all frequencies encircle the point -l,O., then the 

closed loop operation is unstable. How is this to be applied when the transfer 

function for certain frequencies is no longer single value, but as in the case 

of a rectifier operating near the commutation half frequency, is itself a locus 

of values? The Nyquist plot enclosing a rectifier is no longer a line but has 

width see Figure 6 and in fact near the half frequency becomes very wide. A 

region is painted in this case. Is the response unstable, if the point -1,0 is 

touched by the painted region or must it be completely enclosed? 

To answer these questions I constructed a compute model of the block dia- 

gram shown in Figure 1. This model was used to examine two cases. The first 

case using networks designed to make the Nyquist plot touch the -1 ,0 point with 
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the derived rectifier transfer function and sufficient gain. The second case was 

designed using the same criteria described earlier in this note to produce a 

optimum response function. The networks used in these two cases are as follows: 

Case 1 

I 

Case 2 

(two networks) 

c1 WO 

0.1 750 

0.1 750 

(one network) 

0. WO 

0.275 1339 

A Nyquist plot for the first case and showing only the loci of the 360 H, 

vector is presented as Figure 9. The labels identify the amplifier gain for 

each locus presented. When the amplifier gain is small, less than 7.4, the 

locus is well away from the (-1,O) unstable point. However, when the gain is 

increased to 13 it passes very near this unstable point and for all higher gains 

the unstable point is encircled. The closed loop performance for these systems 

are shown in Figures IOA through 1OG. The initial rectifier firing has been 

deliberately miss adjusted to produce a start-up transient. For the low gain 

systems this transient damps in a few commutations and the remaining output 

shows a stable recovery to an equilibrium value. For an amplifier gain of 13 

this equilibrium is attained but only after a very long time. For all higher 

gains the system is unstable. 

It is interesting to note the mode of this instability could be confused 

with high 360 H, ripple. Figure IOG which shows the output for the highest 

amplifier gain is commutating very erratically and has almost degenerated to 6 

phase operation. 

Case 2 yields an entirely different story. The 360 H, vector locus is shown 

in figure 11 and never comes near the (-1 ,O> unstable point regardless of the 

amplifier gain. For very high gain the 360 vector locu is a circle of large 
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radius with a center of equal value out along the 400 line. Hence, that part of 

this locui that falls on the Figure 11 field is approximately a straight line 

down the 130” line. The closed loop performance is stable for all values of 

gain and the starting transient recovers in only one commutation, see Figure 12A 

through 12E. 

I believe these computer models confirm the derivation in the attached 

appendix and the design application used in this note. If the unstable point 

(-1 ,O) is touched by any part of the Nyquist painted region the system is 

unstable ! 
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APPENDIX A -- 

Transfer Function of a Phase Control Rectifier 

Linear feedback systems are today well understood and great progress has 

been made in the understanding of feedback systems involving sampling systems. 

A “grid-controlled” rectifier is a sampling system in that the controlling infor- 

mation affects the output only at certain instants in time. Figure 1 displays 

this sampling process. Waveform A is the rectifier output, with the solid line 

representing the output wi’ch zero control voltage. Waveform B represents the 

change in output that results from the control voltage C. If the control volt- 

age is limited to small signals, then the change in output can be represented by 

an impulse whose magnitude is proportional to the instantaneous values of the 

control voltage. The sampling intervals are approximately uniform in time. 

Using this impulse approximation the rectifier small signal transfer func- 

tion can be determined. This transfer function is defined as the amplitude and 

phase relation between the change in rectifier output resulting from the action 

of a sinusoidal control voltage. Only the output components having the same 

frequency as the control voltage is considered. 

The analysis of this model is basically straightforward and has an analyti- 

cal solution. The resulting transfer function is a function of frequency and 

the parameter $I, the electrical angle between the control voltage zero crossing 

and the preceeding sampling time (see Figure 2). 
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The output change impulse train amplitude can be represented by 

C sin 
i 

2~ w n n=‘n 

WO 1 n=l 

where 

C = amplitude constant (volt-seconlds) 

w = radial frequency of the control function 

wo= radial sampling frequency 

n = positive integer 

(I = as stated above 

The Fourier component of the radial frequency w for this impulse train can 

be obtained by the normal integration. Since the impulse train is zero every- 

where except at the impulses, the integral becomes a finite summation: 

21T 
An=: z Cw sin 

0 

B, = 1 2' cw sin 
-c IT 

0 

where A, and B, are 

The transfer function 

the coefficients {of the cosine and sine terms respectively. 

vector has a magnitude of 

-- 

M = 

and an angle of 

With the following substitutions: 

+k=% 
WO w ’ 
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and some trigonometric algebra, we obtain 

+ = (COG $I - sin2 I$ sin zn cos zn 1 Tk 1 
+ sin I$ cos 4 Z sin2 zn - cos2 

1 n=l 

Girl= 
k 1 k 

WC 
COG $ E 

i 

sin* zn 

J 

-2sin $ cos sin zn cos zn + sin2 $ 2= cos2 zn 
n=l I 

n=l 

The above are relatively easy to evaluate since the summations are indepen- 

dent of I$. If k is not an integer some care must be exercised to determine that 

limit of summation. The proper integer is the number of samplings in the con- 

trol function period which may change by one count for certain values of $ pro- 

ducing cusps in the transfer function. 

The transfer function plots shown in Figure 3 have been normalized to unity 

to remove the constant C. 

The resulting transfer function is not single valued but is a locus of 

values for each frequency with $I as an independent variable. If the control or 

driving frequency is small (k large) then the transfer function locus becomes 

small approaching a point or single value. The curves labeled with the k values 

represents the locus of the transfer function for that frequency ratio for all 

values of $. Figure 3 shows only the first quadrant results; the function is 

symetrical about the horizontal axis. 
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